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Purpose. Allergen-specific immunotherapy (SIT) requires dozens of subcutaneous injections over 3 to 5

years in order to control IgE-mediated hypersensitivity, which is a T-helper 2 (Th2)-associated

pathology. This study investigates the use of poly(lactide-co-glycolide) (PLGA) microparticles combined

with immunostimulatory oligodeoxynucleotide (CpG), as well as protamine in SIT.

Materials and Methods. We prepared microparticle formulations with the major allergen of bee venom,

phospholipase A2 (PLA2), and analyzed the effect of co-encapsulated or admixed CpG in both naı̈ve

and bee venom allergic mice.

Results. Mice immunized with microparticles containing only PLA2 induced weak antibody responses.

In contrast, the combination with CpG resulted in strong PLA2-specific antibody responses. The

presence of CpG was required for the induction of the Th1-associated isotype IgG2a, and the titers of

IgG2a in sensitized mice correlated with a better protection against an allergen challenge. The effect of

CpG was further strengthened when protamine was co-encapsulated for complexation of CpG.

Conclusions. This study shows that allergen-specific immunotherapy with a PLGA-based allergen-

delivery system in combination with CpG enhanced the induction of protective IgG2a immune

responses. This may improve SIT compliance and shorten its duration.
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INTRODUCTION

Approximately 20% of the population in developed
countries suffers from IgE-mediated type-I hypersensitivity.
The clinical manifestations of this type of allergy are rhino-
conjunctivitis, asthma or even life-threatening anaphylactic
reactions. These symptoms are all initiated by the degranu-
lation of mast cells and basophils when their surface-bound
IgE molecules are cross-linked through the binding of the
allergen. Although symptomatic treatments are available, the
only treatment with long-lasting effect for allergic patients is
subcutaneous allergen-specific immunotherapy (SIT). During
SIT, gradually increasing doses of the allergen are injected
subcutaneously. This shifts the immune response against the
allergen from a predominantly Th2-type response (IgE and
IL-4) towards a Th1-like immune response (IgG and IFN-g).

The risk of allergic side effects is currently a major disadvantage
of SIT. This has motivated the study of safer allergens such as
oligopeptides derived from allergens, or recombinant proteins
with reduced IgE-binding capacity (1–3). A second significant
disadvantage of SIT is the high cost with a total of 30–80 injections
administered over years (4). A simplified SIT with a reduced
number of injections would, therefore, be highly advantageous,
as it would improve patient compliance and provide socio-
economic benefits. The most frequently common adjuvants in
SIT are aluminum salts, being known to favor Th2 responses
(including IgE production). Aluminum salts can cause local
granuloma formation at the injection site, but otherwise have a
good safety record in SIT. Nevertheless, many efforts are directed
towards the use of new adjuvants that favor Th1 responses (5).

Biodegradable materials such as poly(lactide-co-glycolide)
(PLGA) represent a potential alternative for controlled delivery
of allergens in SIT (6). PLGA preparations can deliver proteins
over prolonged periods of time and induce protective immunity
after a single subcutaneous injection (7, 8). In addition, they may
also comprise adjuvants or other immune-regulating compounds,
e.g. Th1-triggering compounds.

Major candidate adjuvants that shift the immune responses
towards Th1 are derived from pathogens. The so-called patho-
gen-associated molecular patterns (PAMPs) are recognized by
receptors (Toll-like receptors, TLRs) on antigen presenting cells
(APCs) (9). TLR binding may activate nuclear factor-.B, which
directs the secretion of cytokines, chemokines and co-stimulatory
molecules important for efficient Th1 immune responses.
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Bacterial DNA containing cytosine–guanine rich immunostimu-
latory sequences (CpG) have been recognized to bind to TLR-9
and to trigger strong Th1 responses (10, 11).

In this study, we tested PLGA microparticles in combina-
tion with CpG for their use in subcutaneous SIT against the
major bee venom allergen phospholipase A2 (PLA2). In mice,
isotype switching to IgG2a strongly depends on Th1 CD4 T cell
help. Therefore, the capacity of a vaccine to trigger IgG2a
antibodies was used as an important indicator for the screening
of appropriate formulations. We found that CpG strongly
enhanced the immune response and was a prerequisite for the
induction of IgG2a antibody responses. This effect was more
pronounced when the CpG was co-encapsulated rather than
admixed to PLA2-containing MP. The best prophylactic and
therapeutic immune responses were obtained with PLGA
preparations that contained both co-encapsulated CpG and
protamine.

MATERIALS AND METHODS

Materials

Purified phospholipase A2 (PLA2) from bee venom was
purchased from Sigma-Aldrich (Buchs, Switzerland). Bee
venom extract from ALK-Abelló was purchased through
Trimedal (Bruttisellen, Switzerland). Aluminum hydroxide
(Alhydrogel 2%) was purchased from Brenntag Biosector
(Fredrikssund, Denmark), and phosphorothioate-modified
CpG oligodeoxynucleotide 1668 pt (5¶-TCC-ATG-ACG-
TTC-CCT-GAC-GTT-3¶) was synthesized by Microsynth
(Balgach, Switzerland). We used a 35 kDa poly(lactide-co-
glycolide) (PLGA 50:50) with uncapped end-groups (Resomer
RG503H) from Boehringer–Ingelheim (Ingelheim, Germany).
Salmine sulfate from salmon sperm (protamine sulfate with four
arginine residues at the C-terminus) and poly(vinylalcohol)
(PVA, Mowiol 4–88) were obtained from Fluka (Buchs,
Switzerland).

Microparticle Preparation

PLGA MP were made by microextrusion-based w/o/w-
solvent extraction using a static multilamination type micro-
mixer (Institut für Mikrotechnik Mainz GmbH, Mainz,
Germany), as previously described (12), with slight modifi-
cations. Three different formulations were prepared. For one
formulation, 2 mg of PLA2 were dissolved in 100 ml water and
emulsified by ultrasonication with 7 ml PLGA dissolved in
dichloromethane (5%, w/w). For the others either 4 mg PLA2
or a mixture of 4 mg PLA2 and 8 mg protamine were dissolved
in 1.6 ml water containing 1.6 mmol CpG; this aqueous phase
was emulsified with 12 ml of a 5% PLGA solution in
dichloromethane. After extrusion in the micromixer, the
suspension of MP was collected in a borosilicate glass beaker
containing an aqueous solution of 0.5% (w/w) PVA for solvent
extraction. The particles were gently stirred using a magnetic
rod and kept in a laminar air flow for 30 min for further solvent
removal and hardening of the particles. Finally, the particles
were collected on a 0.8 mm pore-sized mixed cellulose ester
membrane filter (Schleicher & Schuell, Dassel, Germany) and
dried at 20 mbar and room temperature for 24 h.

Particle Size Determination

Microparticle size distributions were determined by laser
diffraction using a Mastersizer X (Malvern Instrument,
Malvern, UK) after suspending approximately 1 mg of dried
MP in distilled water or in an aqueous solution of 1%
lecithin. The average cumulative undersize distributions (D10,
D50 and D90) were determined on a volume basis.

Zeta Potential Measurements

The surface charge of the MP was determined by zeta
potential measurement using a Zetasizer 3000 HSA from
Malvern Instrument (Malvern, UK). Duplicates of approxi-
mately 0.2 mg of dried MP were re-suspended in 2 ml of a
solution of 1 mM KCl (pH 7.6). Alternatively, the MP were
re-suspended in 1% lecithin and then diluted with 2 ml of 1
mM KCl. Mean values of zeta potential were calculated from
triplicates of each sample.

Determination of Allergen Content and Integrity
in the Microparticles

The extraction of allergen from the MP for the analysis of
its content and integrity was undertaken as previously described
(13). Triplicates of approx. 7 mg particles were dissolved in 0.5
ml chloroform by vortexing for 3 min. PLA2 was then
extracted from the organic phase by mixing with 0.2 ml Tris–
HCl buffer and subsequent centrifugation at 3,000 rpm for 3
min. The PLA2 concentration in the aqueous supernatant was
analyzed by an ELISA inhibition assay. In detail, 60 ml of the
Tris–HCl phase containing the extracted PLA2 were mixed in
a 96-well plate with 60 ml of diluted (1:25) human anti-PLA2
serum in phosphate-buffered saline containing 0.05%
Tween20 and 2.5% skimmed dry milk (PBSTM). In parallel,
twofold dilutions of PLA2 were mixed with sensitized serum,
and established as a standard for quantification. Positive (only
serum) and negative (only PBSTM) controls were also
included. After 2 h of incubation at 37-C, 100 ml of each
sample were transferred to an ELISA plate that was pre-
coated with 5 mg/ml PLA2 at 4-C overnight and subsequently
blocked with PBSTM at room temperature for 1 h. The
samples were then incubated at 37-C for 2 h. Subsequently,
the plate was washed and incubated with 100 ml of a 1:1,000
dilution of horseradish peroxidase-conjugated anti-human IgG
(BD Biosciences Pharmingen, San Diego, CA) at room
temperature for 1 h. The plate was washed and developed
with 100 ml of the enzyme substrate 2,2¶-azino-bis(3-ethyl-
benzothiazoline-6-sulphonic acid) diammonium salt (Sigma-
Aldrich) in 1 M sodium dihydrogen phosphate. After 30 min,
the absorption was read at 405 nm. The loading efficiency of
PLA2 in the MP was calculated relative to the theoretical
maximum loading value.

To assess the integrity of the allergen during MP
preparation and storage, PLA2 from the various MP
formulations was extracted with chloroform (as described
above), loaded under reduced conditions on SDS-PAGE and
run at 180 V for 50 min. Following electrophoresis, the gel
was stained with the silver-staining method as previously
described (14).
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In vitro Release of PLA2

Accurately weighed PLA2-loaded MP (approx. 20 mg)
were dissolved in 3.4 ml PBS containing 0.2% BSA and
incubated in a shaker at 37-C for 63 days. At different time
points, the samples were centrifuged at 3,500 rpm for 10
min. Aliquots of the supernatants were analyzed by
inhibition ELISA to quantify the released PLA2. The
dissolution medium was replaced with fresh PBS/BSA after
each sampling.

Immunization of Mice

In a preliminary set of experiments, the dose of PLA2
contained in PLGA MP necessary to induce solid immune
responses was determined. For dose finding, mice were
immunized twice at an interval of 28 days with MP
formulations (MP-PLA2, MP-PLA2–CpG–protamine) con-
taining either 1 or 5 mg of PLA2, or with 1 mg of PLA2
adsorbed on aluminum hydroxide. Blood was collected on
days 28, 56 and 84. The sera were frozen and kept at j20-C
until analyzed by ELISA.

The immunogenicity of PLA2-containing PLGA formu-
lations was tested in 6–10 week old female CBA/J mice. Mice
were primed with 1 mg PLA2 entrapped in the different
PLGA formulations (Table 1). Prior to injection, the MP
were re-suspended using a 1% aqueous lecithin solution
(Epikuron 200, Degussa, Hamburg, Germany) as a wetting
agent and injection vehicle. For the MP-PLA2 + CpG
formulation, 3.1 nmol CpG per dose was admixed to the
MP-PLA2 prior to injection. As a reference, one group of
mice received the same amount of PLA2 adsorbed for 1 h to
0.9 mg aluminum hydroxide (PLA2 + aluminum hydroxide).
Approximately 95% of the PLA2 was adsorbed to aluminum
hydroxide (data not shown). All mice were boosted with the
same regime after 28 days. Serum was prepared from clotted
blood taken on days 28, 55 and 84 and frozen at j20-C until
analyzed by ELISA.

To evaluate the therapeutic potential of PLA2-contain-
ing preparations in allergic mice, the animals were sensitized
by six weekly intraperitoneal injections of 0.3 mg bee venom
allergen extract adsorbed on 1 mg aluminum hydroxide in
PBS (Fig. 1). Three weeks later (time point 0), desensitiza-
tion (SIT) was initiated with different MP preparations
containing 1 mg PLA2 or, alternatively, 5 mg PLA2 adsorbed
on aluminum hydroxide. The treatment was repeated after 28
days with the same dose and, after 111 days, with 5 mg PLA2
in all formulations (MP and aluminum hydroxide). Blood

was taken on days 0, 28, 55, 111 and 139 after the first SIT
injection. The sera were frozen and kept at j20-C until
analyzed by ELISA. For induction of anaphylactic
responses, immunized mice were challenged intraperito-
neally with 15 mg PLA2 in saline, and the rectal temperature
was measured with a calibrated digital thermometer before
and 30 min after the challenge. All animal experiments were
performed according to the guidelines of the veterinary
authorities of the Canton of Zurich.

Antibody Determination by Enzyme-linked
Immunosorbent Assay

For detection of PLA2 antibodies, microtitre 96-well plates
(Nunc Maxisorb) were coated with 100 ml of 5 mg/ml PLA2 in
buffered carbonate (pH 9.4) and incubated at 4-C overnight.
Plates were washed with PBS–0.05% Tween 20 (PBST) and
blocked with 150 ml of 2.5% PBSTM for 1 h. After washing,
serial dilutions of individual sera in 100 ml PBSTM were
incubated in the plates for 2 h. Subsequently, the plates were
washed and incubated with 1 mg/ml biotinylated goat anti-
mouse IgG1 or IgG2a in 100 ml PBSTM for 2 h. After washing
and incubation with 100 ml of a 1:1,000 dilution of streptavidin-
conjugated horse-radish peroxidase for 1 h, the plates were
washed and developed with 100 ml enzyme substrate 2,2¶-azino-
bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt
(Sigma-Aldrich) in 1 M sodium dihydrogen phosphate. After
20 min, the endpoint absorption was measured at 405 nm.

For detection of specific IgE antibodies, plates were
coated with 2 mg/ml of anti-mouse IgE capture antibody. As
secondary reagent for binding to mouse serum, an in-house
biotinylated PLA2 was used at 3 mg/ml. Unless specified, all
antibodies were from BD Biosciences Pharmingen, and all
incubations were done at room temperature.

RESULTS

Microparticle Characterization

Three different PLGA formulations were prepared by a
recently developed microextrusion based process (12, 15). The
size of the particles increased slightly depending on the
number of encapsulated components (Table 1). While 50%
of the MP-PLA2–CpG–protamine particles were smaller than
8.2 mm, half the MP-PLA2 particles were smaller than a 4.41
mm. The 90% cumulative undersize values were comparable
for all tested formulations, i.e., 20.1 (MP-PLA2–CpG) to 26.3
(MP-PLA2–CpG–protamine) micrometers. The re-suspension

Table I. Zeta Potential and PLA2 Content of the Tested Microparticle (MP) Preparations

Size Distribution

(mm) D10/D50/D90

Zeta Potential (mV)

w/o or w/ Lecithin

PLA2 Content

(mg/mg MP)

PLA2 Loading

Efficiency (%)

MP-PLA2 1.2/4.4/24.9 j7.3T0.3, j12.3T1.6 0.84 29

MP-PLA2+CpG 1.2/4.4/24.9 j7.3T0.5, j9.7T0.5 0.84 29

MP-PLA2–CpG 1.3/5.6/20.1 j9.1T1.8, j12.5T0.9 1.55 33

MP-PLA2–CpG–protamine 2.4/8.2/26.3 j9.6T1.8, j13.7T1.6 0.95 22

The MP-PLA2+CpG corresponds to the MP-PLA2 preparation, but contains CpG that was admixed prior to injection; therefore, the PLA2

content of the two preparations are the same. The particle size distribution is indicated as D10, D50 and D90 cumulative undersizes
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of the particles in 1% lecithin resulted in an apparent decrease
in size of the MP-PLA2–CpG formulation but not for the
other formulations (not shown).

The zeta potential of all MP formulations was negative and
changed only marginally upon admixture of CpG (from j7.5
mV for MP-PLA2 to j7.3 mV for MP-PLA2 + CpG), or upon
co-encapsulation of CpG (j9.5 mV for MP-PLA2–CpG), or
else upon co-encapsulation of both CpG and protamine (j9.6
mV for MP-PLA2–CpG–protamine; Table 1). When the
particles were re-suspended in lecithin, the zeta potentials
decreased significantly in all formulations (p<0.01; un-paired,
two-sided Student_s t test).

The experimentally determined PLA2 content in the MP
ranged from 0.84 mg/mg (MP-PLA2) to 1.55 mg/mg (MP-
PLA2–CpG; Table 1). The corresponding microencapsula-
tion efficiencies were in the range of 22 to 33%.

The analysis of extracted PLA2 from the different MP
formulations by SDS-PAGE produced a unique band for
PLA2 at 16 kDa (Fig. 2), which does not suggest any cleavage
of the allergen during preparation and storage (6–12 months)
of the MP. Furthermore, extracted PLA2 maintained its
antigenicity as confirmed by inhibition ELISA with a
polyclonal human antiserum (data not shown), suggesting
that the protein structure remained intact during the MP
preparation and storage.

The in vitro release of PLA2 from all formulations was
triphasic and followed the same pattern (Fig. 3). An initial
burst release during the first 24 h was followed by a dormant
period over 2 weeks and a second release phase lasting more
than seven weeks. While the release of PLA2 from the
protamine-containing formulation was complete over this
time period, the release from the protamine- and CpG-free
formulation (MP-PLA2) reached only 63%.

Immunogenicity

We first determined the dose of microencapsulated PLA2
required to induce a specific immune response in mice after
subcutaneous administration of two different PLGA MP
preparations. Mice were immunized with 1 or 5 mg of micro-
encapsulated PLA2 in MP-PLA2 or MP-PLA2–CpG–prot-
amine and boosted 28 days later with the same doses. As a
control, one group of mice was primed and boosted with 1 mg
PLA2 adsorbed on aluminum hydroxide. As illustrated in Fig.
4, 5 mg PLA2 in MS-PLA2 induced high levels of IgG1 while
the 1 mg PLA2 dose induced only weak IgG1 responses and no
detectable IgG2a antibodies. The CpG- and protamine-
containing particles were strongly immunogenic for both
IgG1 and IgG2a induction both at 1 and 5 mg PLA2, and a
single administration was sufficient for seroconversion in the

latter group. Aluminum-adsorbed PLA2 induced only IgG1
antibodies and boosting was required.

Based on these results, we tested the immunogenicity of
four different PLGA MP preparations containing 1 mg of
PLA2 (Table 1). Mice received two injections 28 days apart,
and the PLA2-specific antibodies were measured 28, 55 and
84 days after the first injection. In line with the results above,
a single administration of the CpG-free formulation (MP-
PLA2) induced little or no detectable anti-PLA2 antibodies
by day 28 (Fig. 5). At this time point, only the formulation
MP-PLA2–CpG–protamine induced some IgG1, but no
IgG2a antibodies. A second injection on day 28 did not
notably increase the antibody titers of mice that had received
MP-PLA2, unless CpG was admixed prior to injection (MP-
PLA2 + CpG). The co-encapsulation of CpG (MP-PLA2–
CpG) further increased this response, which was additionally
enhanced when both CpG and protamine were co-encapsulat-
ed (MP-PLA2–CpG–protamine). Maximum antibody titers
for both IgG subclasses were observed 1 month after the
second injection (day 55), after which time the antibody levels
slightly decreased or remained stable during the next month
(day 84). The IgG2a levels induced by the two MP prepara-
tions with encapsulated CpG (MP-PLA2–CpG and MP-
PLA2–CpG–protamine), but not with admixed CpG (MP-

Sensitization
6x 0.3 ?g BV i.p.

Al(OH)3

Desensitization s.c.
2x 1 ?g PLA2 in MP

Desensitization s.c.
1x 5 ?g PLA2 in MP

Sensitization
6x 0.3 µg BV i.p.

Al(OH)3

Desensitization s.c.
2x 1 g PLA2 in MP

Desensitization s.c.
1x 5 g PLA2 in MP

Time (days)

0 28 55 111 139-21-56

µ µ

Fig. 1. Schematic illustration of the therapeutic immunization

protocol. Black arrows represent injections and grey arrows represent

bleedings.

Fig. 2. Silver-stained SDS-PAGE of PLA2 extracted from the

different microparticle formulations. First lane was loaded with

Seeblue Plus marker and the last lane with 1 mg of purified PLA2

as a positive control. For all the other lanes, maximal loading

volumes were used.

1930 Martı́nez Gómez et al.



PLA2 + CpG), were significantly higher than those induced by
PLA2 adsorbed on aluminum hydroxide (p<0.05 for the MP-
PLA2–CpG and p<0.001 for the MP-PLA2–CpG–protamine,
as analyzed by a two-way ANOVA with Bonferroni posttest).
Also, the quality of the total immune response was different
between the immunogenic PLGA preparations and the
aluminum adsorbed control vaccine. The latter induced an
IgG1 (Th2) polarized antibody response, while the particles
shifted the response towards an IgG2a (Th1), as evident from
the IgG2a-to-IgG1 ratios (Fig. 5c). Neither the PLGA
preparations nor the control group (aluminum hydroxide)
induced detectable PLA2-specific IgE antibodies (data not
shown).

Allergen-specific Immunotherapy

To evaluate the therapeutic potential of the different
MP formulations, we used a murine anaphylaxis model. Mice
were sensitized by six weekly intraperitoneal injections of
bee venom allergen extract adsorbed on aluminum hydrox-
ide. Three weeks after the last sensitization injection, SIT was
initiated by subcutaneous injections with different PLGA
formulations containing 1 mg PLA2 or with 5 mg PLA2
adsorbed on aluminum hydroxide (Fig. 1). As evident from
Fig. 6a, two injections with 1 mg of microencapsulated PLA2
were not sufficient to induce detectable titers of PLA2-
specific IgG2a antibodies in the sensitized mice. Therefore,
the animals were boosted at day 111 after the first SIT
injection with the same MP preparations, but at the higher
dose of 5 mg PLA2. This increased the levels of allergen-
specific IgG2a significantly compared to the pre-boosting
titers. The two formulations with encapsulated CpG induced
significantly stronger (p<0.05, as analyzed by a two-way
ANOVA with Bonferroni posttest) IgG2a responses than
those induced by the control vaccine with aluminum hydrox-
ide. Finally, to assess the functional efficacy of the different
treatments, mice were challenged with a high dose of PLA2,
and their body temperature monitored before and after the
challenge. Mice treated with MP containing CpG had the

smallest body temperature drop (Fig. 6b), being significantly
lower than that observed in the untreated control group
(p<0.05 for MP-PLA2–CpG and p<0.01 for MP-PLA2–CpG–
protamine, as analyzed by a one-way ANOVA with Dunnet_s
Multiple comparison test). In fact, IgG2a responses correlat-
ed with protection against anaphylaxis (p=0.02, correlation
analyzed by the Pearson test). The higher the IgG2a titers,
the lower the temperature drop (Fig. 6c).

The levels of bee-venom specific of IgE and IgG1
increased similarly for all groups during the sensitization
period and remained unchanged during SIT. For all groups,
PLA2-specific IgG1 increased comparably during both sensi-
tization and SIT (data not shown).

DISCUSSION

Allergen-specific immunotherapy (SIT) aims to shift the
balance between Th2 and Th1 responses in favor of the
latter. The consequences are an increase in Th1-related
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antibodies (IgG4 in humans, IgG2a in mice) and cytokines
(IFN-g) (16, 17), a reduction in Th2-associated IgE and IL-4
(18), and an increase in allergen-specific suppressive activity
through regulatory CD25-positive CD4 T cells and IL-10 (19,
20). However, current SIT is costly and requires years of
allergen injections. As the allergen dose cannot be increased
due to allergic side effects, concepts to enhance the efficacy
of SIT have focused on creating recombinant allergens with
less allergic side effect or on the developing new adjuvants
and delivery systems. So far, only adjuvants based on
aluminum and calcium salts have been approved for SIT.
Both compounds preferentially stimulated Th2-polarized
antibody responses (21), but T cell responses were poor.

Biodegradable and biocompatible polymeric MP are
particularly interesting candidates for allergy vaccines, be-
cause they release proteins over prolonged periods of time
(22) and, thereby, reduce the need for frequent booster
injections. Since entrapped allergen would be less accessible
for binding IgE on the surface of mast cells and basophils, the
encapsulation of allergens may also protect the allergic patient
from undesired allergic side effects. Due to their particulate
nature and small size, MP also have intrinsic adjuvant
properties and may be combined with immunostimulatory
agents to trigger distinct pathways of immunological reactions.

Oligodeoxynucleotides rich in cytosine–guanine immu-
nostimulatory sequences (CpG) are prototypes of Th1
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Fig. 6. Therapeutic potential of PLA2-containing microparticles. a Sensitized mice as described in the

BMaterials and methods^ were therapeutically vaccinated with MP-PLA2 (empty squares), MP-PLA2 +

CpG (empty triangles), MP-PLA2-CpG ( filled inverted triangles), MP-PLA2–CpG–protamine ( filled

triangles), PLA2 adsorbed on Al(OH)3 ( filled circles), or left untreated ( filled squares). IgG2a titers were

defined as the inverse of the highest dilution reaching an absorbance equal or higher than that of a

negative serum plus three standard deviations and expressed as geometric means T standard error (n=5).

Similar levels of IgG1 and IgE were seen for all groups treated (not shown). b Induction of anaphylaxis

responses against PLA2 in desensitized mice. After desensitization, the mice were challenged with 15 mg

of purified PLA2, and the body temperature was measured before and 30 min after the challenge. Values

are expressed as body temperature difference before and after. Significant differences are indicated as

compare to the untreated group (**p<0.01; *p<0.05). c Correlation between the level of protective

antibodies and body temperature change. The IgG2a absorbance from the last time point was plotted

versus the body temperature change in challenged mice. The correlation was analyzed by the Pearson test,

which assumes that the data is sampled from a Gaussian population, with a 95% confidence interval.
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response inducers. CpG stimulates TLR9 on APCs (23). It
has been shown that CpG can restore imbalanced Th2–Th1
responses in allergic mice (24, 25), and that the conjugation
of a ragweed allergen to CpG improved the therapeutic
efficacy in patients with allergic rhinitis (26). In the present
study, therefore, we combined CpG with allergen-containing
PLGA MP and evaluated the immunogenicity and therapeu-
tic potential of the formulations in a murine model of allergy.

The results suggested that co-encapsulation of allergen
and CpG in PLGA MP can have important benefits for
application in SIT. CpG lowered the dose-threshold for
induction of allergen-specific immune responses. This paral-
leled a study that showed that PLGA MP containing a
streptococcus antigen and CpG elicited significantly higher
antigen-specific antibody responses when compared with the
same vaccine without CpG (27). Moreover, only CpG-
containing preparations induced IgG2a antibodies, suggesting
that a potent allergy vaccine based on PLGA MP should also
contain CpG or an equivalent Th1-triggering adjuvant. The
therapeutic model confirmed this finding, by showing that
CpG-containing MP preparations protected mice against
induced anaphylaxis better than CpG-free preparations.

Despite this clear adjuvant effect of CpG, oligodeoxynu-
cleotides have relatively short half-lifes in vivo due to
degradation by nucleases (28, 29). For in vivo use, therefore,
they have been stabilized by phosphorothioate-modification of
the oligodeoxynucleotide backbone (28, 30). Alternatively,
CpG has been conjugated to stabilizing compounds (31, 32) or
packaged into virus-like particles (33). For the same purpose,
we tested whether the PLGA MP-based allergy vaccine could
be further improved by adding protamine to the formulation,
as a putative stabilizer for DNA. The experiments revealed
that the immunogenicity of the vaccine was indeed further
enhanced when protamine was co-encapsulated. The induction
of both IgG1 and IgG2a isotypes increased, with a slightly
stronger increase of the latter isotype. This resulted in better
protection against anaphylaxis, as compared to all other PLA2
vaccine preparations tested.

Protamine is a cationic polypeptide that is known to
stabilize DNA in the haploid phase of spermatogenesis.
Pharmaceutically, it has been used to preserve plasmid DNA for
gene transfer (34) and to avoid degradation of oligodeoxynu-
cleotides (35). Besides direct stabilization of CpG, the improved
performance of the protamine-containing formulations could
also be a secondary result of more efficient encapsulation of
CpG due to complexation with protamine. Indeed, CpG
adsorption was found to be stronger on protamine-containing
particles than on protamine-free particles and the release of
CpG was strongly sustained with the former particles (Fischer,
unpublished data). Moreover, due to the neutralization of the
negative charges on CpG by the positive protamine as well as
the increased size of the protamine–CpG complex, the complex
is expected to have a higher affinity for the polymer matrix than
CpG alone. This should allow a more delayed release of the
CpG, which again would allow CpG and the allergen to reach
the same APCs. Such a synchronized delivery of danger signals
(adjuvant; so-called signal 0 and 2) and allergen (so-called signal
1) is one important criterion for optimal stimulation of long-
lasting immune responses (36). The importance of such
synchronized allergen and CpG delivery was further underlined
by the fact that admixed CpG, released by a faster kinetics than

the encapsulated allergen, induced weaker antibody responses
and less protection than co-encapsulated allergen and CpG.
Experiments with MP formulations that contained co-encapsu-
lated PLA2 and protamine, but no CpG, performed similarly to
the MP-PLA2 formulation (results not shown). This implies that
co-encapsulated protamine exerted its effect through stabiliza-
tion and improved encapsulation of CpG and not due to a direct
immune regulatory or stimulatory effect.

One of the major concerns about encapsulation of therapeu-
tic proteins and antigens is the risk of degradation or structural
changes during the process. This has so far limited the clinical use
of MP. In our study, the encapsulation of PLA2 did not seem to
affect its integrity or immunogenicity. Nonetheless, some disrup-
tion of the molecule may not be as damaging for allergens as it
may for other proteins. In fact, many of the new approaches in
allergy treatment use modified allergens with low IgE binding
capacity, e.g., recombinant proteins (37, 38), chemically cross-
linked (39) or heat-denaturated allergens (40, 41).

To the best of our knowledge, this is the first report where
the potential of PLGA MP with co-encapsulated allergen and
CpG has been studied in vivo for use in allergen-specific
immunotherapy. The preparations were strongly immunogenic
in mice and the Th1-triggering effect of CpG was further
improved by co-encapsulation of protamine. Importantly, this
correlated with a better protection against anaphylaxis in bee
venom allergic mice. Therefore, due to the increased efficacy
and the reduced risk of allergic side effects, CpG- and
allergen-containing PLGA MP represent a most attractive
strategy for improving the conventional long-lasting and costly
SIT.
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